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E F F E C T  O F  C O A R S E  I M P U R I T Y  P A R T I C L E S  O N  T U R B U L E N T  

C H A R A C T E R I S T I C S  O F  G A S  S U S P E N S I O N S  IN C H A N N E L S  

I. V. Derevich UDC 532.529 

Turbulent flows of a gas with particles are realized in many pieces of energy production and chemical industry 
equipment. The wide range of size, concentration, and makeup of particles thus transported creates the need for a reliable 

method of predicting the turbulent characteristics of dispersed flows as a function of flow regime. Distortion of carrier phase 
flow parameters in the presence of a dispersed impurity determines the suspension capability of the flow, energy losses in 

pneumotransport systems, and the degree of channel wall erosion due to particle collision with the surface. The mechanism 

and intensity of the particles' effect on carrier phase parameters are related to the mass concentration of the impurity and the 
ratio of the particle dynamic relaxation time to the characteristic time scale for damping of energy capacity variations of the 
continuous phase. Chaotic motion of time particles, the dynamic relaxation times of which are less than or of the same order 

of magnitude as the time scale of pulsations in gas velocity produce a viscous resistance force caused by interphase pulsation 
slippage. In this case the change in flow pulsation characteristics is the result of the direct action of the foreign particles on 

the turbulent fine scale structure of the gas (see, for example, [1-3]). The difference between average characteristics of the dusty 
and single-phase flows is related to change in intensity of turbulent momentum transport of the carrier phase in the presence 

of particles. 
For coarse particles, the dynamic relaxation times of which significantly exceed the time scale of turbulent fluctuations 

of the continuous phase, there is a qualitative change in the mechanism by which the discrete foreign substance affects the 

carrier flow. Due to the significant difference in time scales of particle and turbulent vortex motion there is little direct effect 

of particles on the intensity of gas velocity pulsations. Turbulent motion of the foreign material is caused by collisions of 
particles with the channel walls in which, on the hand, the particles lose part of their momentum upon inelastic collision upon 

the wall, while on the other, they take on an intense rotation about their own axis. The Magnus force developed as a result 
of this rotation is the case of intense chaotic mixing of the particles across the channel. The loss of momentum by particles upon 

collision with the surface leads to a significant average phase slippage [4-6]. The velocity of the discrete impurity is higher than 
the gas velocity near the wall and markedly lower within the core of the flow. Distortion of the average gas velocity profile 

is the result of the interphase aerodynamic resistance force. Change in the average velocity gradients of the continuous phase 
with shear exerts of significant effect on the level of gas velocity fluctuations. Aside from the mechanism of reverse action of 

coarse particle impurities on the flow discussed above, direct generation of small scale vortices due to flow detachment from 
particle surfaces [7] is also possible. 

Direct stochastic modeling of the dynamics of turbulent flows with particles (see, for example, [8]), where the 
Lagrangians of particle trajectories are calculated in the field of random velocity fluctuations of the continuous phase excited 

by a stochastic source in the equation of motion for the latter phase yields unique information on the mechanism of foreign 
particle action on the structure of turbulent vortices. However this method of description is applicable only to flows with fine 

impurity particles at a low mass concentration. From the computation viewpoint it is more economical to use a model including 
integration of a set of particle trajectories, realized by including a random component in the gas velocity with a specified 

distribution law for its change in the particle dynamics equations [9]. The level of fluctuation motion of the liquid phase is 

calculated with turbulence models for a single-phase flow. Use of this method to study the reverse effect of flow structure of 

large size foreign particles randomly colliding with the walls may require significant expenditures of machine time. 

A more realistic method for describing the hydrodynamics of a gas suspension with consideration of the effect of 

particles on carrier flow characteristics involves use of a system of balance equations for characteristics of the continuous and 

discrete phases, written in Euler representation. To realize such a program it is necessary to develop a technique for closing 
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he system of balance equations and to write a system of boundary conditions representing the process of particle collision with 
he surface. The Euler method of modeling the flow of gaseous suspension of particles with consideration of particle rotation 
md collision with the walls first realized in [10]. Calculations were carried out on the basis of a system of equations for the 
irst and second moments of the fluctuations of velocity and the angular velocity of particle rotation. The Boussinesq gradient 
tpproximation was used to define the third order moments. 

In [11] the present author proposed another method, different in principle, for describing the dynamics of coarse 
)articles in channels, based upon an equation for the probability density of distributions over coordinates, velocities and angular 
:oration velocities of particles about their own axis. A closed system of equations was written for the first and second moments 
)f velocity and particle rotation angular velocity. Expressions for the second and third moments, representing turbulent 
momentum transport, the moment of the momentum, and the intensity of fluctuation motion of the particles were found by 
approximate solution of the kinetic equation for the probability density with consideration of first order terms in gradients of 
the averaged dispersed phase parameters. Use of relationships for a single particle before and after collision, together with 
approximate solution of the kinetic equation, allows one to write boundary conditions (of third order) for the balance equations 
for the first second moments of panicle characteristic fluctuations. Only data on the dynamics of an isolated particle are 
required to realize the system of equations. 

In the present study the method of the probability density function for particle distributions over coordinates, velocities, 
and rotational angular velocities will be used to create a closed system of balance equations for the first and second moments 
of carrier gas velocity fluctuations with consideration of interphase interaction. Use of the probability density method permits 
proper completion of the equations for the second moments of continuous phase velocity pulsations and consideration of terms 
previously neglected in [10]. The equation for turbulent gas energy also includes a term which describes supplemental 
generation of fine-scale fluctuations produced by gas flow over particles at high Reynolds numbers, calculated using the relative 
phase slippage velocity and the particle diameter. Using a single-parameter approximation for modeling the turbulent gas flow 
with consideration of interphase interaction, we will study the mechanism of carrier phase turbulence suppression and 
generation in the presence of particles and calculate by hydraulic resistance for ascending and descending gas suspension flows 
in tubes. The calculation results will be compared to experimental data. 

1. System of Equations for Average and Second Moments of Gas Velocity Fluctuations. We will consider the flow 
of a gas with low volume concentration of foreign particles without consideration of interpanicle collisions. The system of 
equations describing the action of foreign particles on the continuous phase has the form 

au+ a~ ! aP a2~ 
--+ uk--= 
at ax k ax i 8xkSx k 

P'  - e 0 ,  w ,  o; 
Pl p-I QN ~xi 

(1.1) 

1 
0 = 7 0 - v A  - 0 - L , ) '  (1.2) 

where U i, P are the gas velocity and pressure; Vpi, Rpi, 0pi are the velocity, coordinate and angular rotation velocity of particle 
p; F i is the acceleration produced by interphase interaction; gi is the acceleration due to mass forces; �9 is the particle velocity 
dynamic relaxation time, in the general case dependent upon the relative velocity of flow over the particles and the particle 

angular rotation velocity;p is the kinematic gas viscosity; Pl, P2 are the densities of the gas and the panicle material; 3'~ is a 
parameter proportional to the ratio of gas and particle densities and dependent on the relative overflow velocity and rotation 
intensity; qp = ~rdp3/6 is the volume of particle p; QN is the flow volume containing N particles; 8(x) is the Dirac delta- 
function; eij k is an antisymmetric tensor. 

The system of equations describing particle dynamics in the flow and the mechanism of particle collision with the walls 
is analogous to that of [11]. 

In order to transform from the Lagrangian description of Eq. (1.1) to an Eulerian one we introduce the probability 
density of particle distributions over coordinates, velocities, and rotational angular velocity: 

%(x,  V, ~,  t) = ~(x - eA~(V - vA~(Q - ~,). 0.3) 
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The given model does not consider the effect of interparticle collisions, so that to describe the behavior of a set of 
independent particles it is sufficient to consider the probability density of an individual particle CI, p. 

To obtain data on the characteristics of the turbulent flow we average Eq. (1.1) and the equations for the second 
moments of gas velocity over the set of turbulent realizations. As we do this, there appear in the equations for averaged velocity 
and second moments of the continuous phase certain terms related to interphase interaction, expressed in terms of the 
probability density (1.3): 

Ai  = f dV f d f 2 ( * p  I v~(x' t) - y, ei~f2~(U~(x, t ) - V ) ] ) ;  (1.4) 

r v , ( x .  ,)  - 
8,,,, = f ,iv f ""<%[-1 - 7 -  "' 

r,.,,j.~ngvj(x, t) - v,) / u ( x ,  t)), v, = (v,) + u,. (1.5) 

Here the angle brackets denote results of averaging. To expand Eqs. (1.4), (1.5) we need an expression for the correlator 

< OpU m > [11]. 

(dPpu..) = -f(umu,) O(r Ter ekt.(u..u,)s k a(*l') 
ov~ - o v  ' (1.6) 

f = 1 - e x p ( - T e / z  ) 

(where T E is the characteristic time of energy fluctuations in the gas velocity). 
Substituting Eq. (1.6) in Eqs. (1.4) and (1.5) we write equations for the averaged velocity and second single-point 

moments of gas velocity fluctuations in the presence of particles: 

a(v,) a(v,) a ( + (v.) + (.,.,) - 
at ax k ax k 

o(OUx:) ) , a(P) P2 (C){(U) - (V) 
V = P i  aX i P i  

r..,j,t(o,)((uj) - (v)) - (o~.5)]}; 

(1.7) 
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at ax k ax k , i * ax~ (ujuk) ax k 

-7,  tax, § ax,) p, ax,) 

v a2( ' " )  - 2v <~ L~_) _ 
a x k a x  k ax.k ax,  (1.8) 

1'-2 <C)(B o + Bp + (C)%. 
Pl 

1 
B0 = T (-,u~)(1 - / )  + e e..(t~k)(U.5) -- 

(u,.,)((Q.) (~p + (o~.%)). 

<N) = f a v  f d~<.>. <v,) (N) = f a v  f d~V,<*). 
N 

p=l  

(c )  = ( N ) q . l  (2 . .  o, = V, - (V,), o~, = t~, - (n,). 

Here < N > .  < C > are the numerical and volume particle concentrations in the flow; < V i > ,  < f~i > .  ui. c~ are the averaged 

and pulsation components of velocity and particle angular velocity. The terms in the expression for Bij are additional dissipation 
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of the intensity of carrier phase fluctuation motion due to pulsation phase slippage, caused by both viscous resistance to particle 
transnational motion as well as the Magnus force. 

The term Gij on the right side of Eq. (1.8) reflects additional generation of fine-scale fluctuations in the gas, produced 

by flow over particles. To described the mechanism underlying this effect of  the impurity on turbulence of the fluid phase we 
assume that the intensity of  gas pulsation generation due to flow over an isolated particle is proportional to the work done by 

the component of the viscous resistance force related to the non-Stokesian nature of the overflow over the relative displacement 
of the particle per unit time. In that case the expression for Gij takes on the form 

G~i = ~,]3 (3/4)C~1U - vl3/de(l - exp(-ReJRee,,)), (1.9) 

C o = 24/Rep + C~, Re e = dplU - Vl/v, 

where Rep is the Reynolds number for flow over the particle; C D is the total aerodynamic resistance coefficient of a spherical 
particle; C o '  is the aerodynamic resistance component considering the non-Stokesian nature of the overflow; Repc is the 

characteristic Reynolds number for flow over particles, beginning at which detachment of  vortices from the particle surface 

occurs; Bg is an empirical constant. 
The system of equations (1.7)-(1.9) together with the balance equations for concentration, averaged velocity, and 

rotational angular velocity, second moments of  particl e velocity fluctuation, and the boundary conditions considering particle 

collisions with the channel walls [11] permit modeling of a gas flow with a large particle impurity, with consideration of the 
reverse effect of the dispersed component on characteristics of the carrier phase. 

2. Calculation Results. We will consider a flow in the stabilized portion of a circular vertical tube. The characteristics 

of turbulent flow of the continuous medium with particles will be considered within a single-parameter turbulence model. The 

equations for average flow velocity and gas pulsation energy have the form 

(1 -y ' )dy '  ( l - y ' ) ~ e ( l  +v~) dy'] - 

l /'2 "C" U" I P2 ~C3 [ '  , , tco,u,,~] (2. I) ~ >y, = -I< - ~ . .  L~ - ~,o(c, ~ +, ,,~j. 

(I y') dy' (I - y') raRe +cIRe' ~ - ]  -- --2 --L,' " --Re --C '2 - -  

~ ( ) [ g e x p  - - r .  t +<~ =-R--g 

(oJ'~) -- - ( 1  + T/~) - IS te~n ' /Oy ' ,  

(o~ '~) = ~ / L ( 1  + ~ /~ . ) -~s t~ ' , , (on '  / o y )  ~, 

= - ,,1 / ( - e x p ( - R % / R e ) ) ,  (7' (9/8)/~,c~,1u~ v ' 3  d ' l  

T' = T e I J / R ,  v: = c, Re,2/(cs + Re,), 

K = -R/(Zolv~)o(p>/ox, 

- ( c > a ' ,  

(2.2) 

where St = rUm/R is the particle Stokes number; Urn is the mean-mass flow velocity; R is the channel radius; Re = 2RUm/v 
is the flow Reynolds number; e '  = 0 . 5 < u i u i > / U  2 is the dimensionless turbulent energy of  the gas; fl' = fiR/Urn is the 

dimensionless turbulent energy of the gas; ~ '  = ~R/U m is the dimensionless angular velocity of  a particle's rotation about its 

own axis; aJ' = a~R/U m is the dimensionless fluctuation of the particle angular rotation velocity aij' = < viv i >/Urn2; V i' = 
<Vi>/Urn is the dimensionless mean particle velocity; L '  = L~. /R is the dimensionless scale factor for Nikuradze 
displacement; Re t = L ' e  '1/2 is the turbulence Reynolds number; the value of the constant b in Eq. (2.2) is chosen from the 

condition exx' + eyy' = be. The intensities of  longitudinal and transverse gas velocity fluctuations are taken proportional to 

the turbulent energy exx' = Xxe' , eyy' = Xye (x x = 1.17, xy = 0.25). The characteristic time for energy-bearing gas velocity 

pulsations was evaluated as in [11]. Values of  the constants el, e2, c3, c4, c 5 were selected equal to the corresponding values 
for the case of  single-phase turbulence in [2], while the constant/gg in the expression for gas velocity pulsation generation due 
to detachment of  vortices was taken equal to 0.25, Repc = 40. 
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The boundary conditions for the gas dynamics equations follow from the attachment and symmetry conditions y '  = 0. 

U" = e' = 0; y' = 1: a u ' / a y '  = a e ' / a y '  = O. (2.3) 

Simultaneous solution of the system (2.1)-(2.3)was carried out numerically by iteration methods to the pre-specified 

calculation accuracy. The scale factor of discrete phase characteristics significantly exceeds the scale of  gas characteristics over 

the section. In connection with this, the calculations of  particle and gas dynamics were performed in independent grids. The 
particle parameters were determined by a purely implicit method of construction on an almost uniform grid, with the gas flow 
characteristics being approximated by cubic splines. Iterative calculation of the carrier phase flow was realized on a non- 

uniform grid, more dense near the tube walls. In this case the discrete phase parameters were approximated by cubic splines. 
The parameter K in Eq. (2.1), representing the flow hydraulic resistance, was calculated by applying a branching 

procedure to Eq. (2.1), based on relationships obtained from Eq. (2.1) by integrating over the channel section: 

2 dU' lp2{l 
K - Re I , ' -o + PC [ ( ( C ) U ' ) .  - -  

(2 .4)  
V' }. ((C) ,,),,j + ~, [ ( ( C ) n ' W ) .  + ( (CX,o '~ ) ) , .  ] 

Here the index m denotes mean-values. 

The profiles of  mean discrete coarse particle phase characteristics are generated by interaction of particles with the 
channel walls. In particular, a bell-shaped particle concentration profile is realized under the action of the magnus force 

produced by particle rotation after collision with the walls. Figure 1 shows a spherical particle distribution in a tube with 

2R = 16 mm for a flow velocity of 30 m/see (curve 1, bronze particles with dp = 45 /~m, k n = k t = 0.6; curve 2, 

electrocorundum particles, ~ = 55/xm, k n = .0.2, k t = 0.6; points, experimental data [12]). Loss of  particle momentum upon 
collision with the walls produces an intense average phase slippage. In Fig. 2 calculations of average slippage are compared 

with experimental data [13] (tube diameter 2R = 30.5 ram, k n = k t = 0.6, U c is the gas velocity on the tube axis, curve 1, 
particles with ~ = 200/~m, Re = 3.3.104, 2, dp = 500 #m, Re = 1.6.104, 3, dp = 3000 #m,  Re = 3.1.104, 4, dp = 1000 
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/~m, Re = 1.6.104; dashed line, gas velocity). The bell-shaped particle concentration proffie and uniform particle velocity 
distribution over channel section causes the maximum interphase interaction to be concentrated in the flow core. There is then 
a significant distortion of the average gas velocity profile. Figure 3 shows gas and particle velocity profiles in accordance with 
the experimental data of [13] (dash-dot line, gas velocity in absence of particles, dashes, particle velocity; solid lines, gas 
velocity with ~ = 200/~m particles; curves I for impurity mass flow concentration 2 kg/kg; 2, 3.2 kg/kg). It is evident from 
Fig. 3 that the degree of carrier phase velocity distortion increases with increase in impurity concentration. With growth in 
concentration the particle velocity increases, which corresponds to the experiments of [13]. Reduction in the gradients of 
average carrier phase velocity in the flow core leads to decrease in the intensity of gas velocity fluctuation generation. This 
effect is shown clearly in Fig. 4, where comparison is presented with experimental data of [13] for the intensity of longitudinal 
gas velocity fluctuations for the case of a flow of particles with dp + 200/~m, Re = 2.3-104 (curves 1-4 correspond to flow 
concentrations 0, 1, 1.9, 3.2, while the dashed line is the result of calculations without consideration of additional gas velocity 

fluctuation generation due to detachment of vortices from the surfaces of particles flowed over). The effect of the inertial 
particle impurity upon continuous phase turbulence is caused, on the one hand, by reduction in the level of gas velocity 
pulsation generation in the flow volume, and on the other, by direct generation of velocity pulsations by flow over particles 
at high particle Reynolds numbers (Rep > >  1). The effect of additional generation of f'me scale motion in the carrier phase 
is manifested clearly in the presence of relatively large impurity particles with marked average phase slippage. Figure 5 
compares calculations for intensity of longitudinal gas fluctuations with experimental data of [13], obtained for a gas flow with 
Re = 2.3.104 and dp = 1000/Lm (curves 1-3 represent mass flow concentrations of 0, 1, 3). 

As follows from Eq. (2.4), in transport of a gas suspension in tubes, as compared to flow of a single phase, a 
significant contribution to hydraulic resistance is produced by the interphase resistance force. Since interphase velocity slippage 
is generated by the force of gravity acting on particles and particle momentum loss upon collision with the wails, these effects 
are considered implicitly in calculating the parameter K of Eq. (2.1), which is proportional to the hydraulic resistance 
coefficient of the dusty flow. 

Figure 6 shows a comparison of calculated and experimental [14] ratios of hydraulic resistance of the pure gas G0 and 
the suspension ~ as a function of mass flow concentration of coal particles with dp = 230/zm in an ascending flow in a vertical 
tube 16 mm in diameter (curves 1-5 correspond to flow Reynolds numbers of 32-103, 19.103, 11.6-103, 7.6.103, 6.5" 103). As 
follows from Fig. 6, with reduction in flow velocity carrier phase, energy losses to work performed against gravity increase. 
In the case of a descending flow, particle motion in the gravitational field may lead to increase in pressure drop over the course 
of the flow. Figure 7 shows theoretical and experimental data on hydraulic resistance for a descending flow [14]. Calculations 
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were performed for a suspension of the same type as in Fig. 6, with the exception of flow direction (curves 1-3 correspond 
to flow Reynolds numbers 20.103 , 11.5.103 , 6.3.103). 

Thus, a probability method has been presented for description of turbulent flow of a gaseous suspension of relatively 
large particles, based on use of the apparatus of the probability density function for particle distribution over their 
characteristics. The method presented allows construction of complete models for calculation of complex two-phase flows of 

gases with particles, which are of practical importance. 
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